Al-Ni-Y (Aluminum-Nickel-Yttrium)

V. Raghavan

The investigation of this ternary system by [1968Ros] presented an isothermal section at 1000 °C for Ni-rich alloys. Later studies by [1977Ryk] showed the existence of a number of ternary compounds in the Y-lean region at 800 °C. Subsequently, [1992Gla1], [1992Gla2], and [1993Gla] reported the structural characteristics of three additional Al-rich ternary compounds. A partial liquidus projection and an isothermal section at 500 °C for Al-rich alloys were determined by [2000Rag]. Recently, a thermo-dynamic description of this system was developed by [2009Gol], with emphasis on liquid-solid reactions.

Binary Systems

The Al-Ni phase diagram [1993Oka] shows five intermediate phases: NiAl₃ ($D0_{11}$, Fe₃C-type orthorhombic), Ni₂Al₃ ($D5_{13}$ -type hexagonal, denoted δ), NiAl (B2, CsCl-type cubic, denoted β), Ni₅Al₃ (Ga₃Pt₅-type orthorhombic), and Ni₃Al ($L1_2$, AuCu₃-type cubic, denoted γ'). The Al-Y phase diagram [Massalski2] has the following intermediate phases: α Al₃Y ($D0_{19}$, Ni₃Sn-type hexagonal), β Al₃Y (BaP₃-type rhombohedral), Al₂Y (C15, MgCu₂type cubic), AlY (B_{f5} CrB-type orthorhombic), Al₂Y₃ (Al₂Zr₃-type tetragonal), and AlY₂ (C23, Co₂Si-type orthorhombic). The Ni-Y phase diagram [Massalski2] depicts the following stoichiometric compounds: Ni₁₇Y₂ (Ni₁₇Th₂-type hexagonal), Ni₅Y ($D2_d$, CaCu₅-type hexagonal), Ni₄Y, Ni₇Y₂ (Co₇Gd₂-type rhombohedral), Ni₃Y

Fig. 1 Al-Ni-Y partial isothermal section at 500 °C [2000Rag]. Narrow two-phase regions are omitted

(Ni₃Pu-type rhombohedral), Ni₂Y (C15, MgCu₂-type cubic), NiY (*B*27, FeB-type orthorhombic), Ni₂Y₃ (tetragonal, $P4_{1}2_{1}2$), and NiY₃ ($D0_{11}$, Fe₃C-type orthorhombic).

Ternary Compounds

A number of ternary compounds in this system were first reported in a series of papers by Rykhal and coworkers, see [2000Rag] for a listing of these references. The structural characteristics of 13 ternary compounds known in this system were listed by [2000Rag] (not repeated here). In addition, [2004Vas] reported another ternary compound $Y_3Ni_5Al_{19}$ with the Gd₃Ni₅Al₁₉-type of structure. This compound is probably metastable. Earlier, [2000Rag] had ruled out the existence of this compound. In the Al-rich region (60-100 at.% Al) at 500 °C, four ternary compounds are present [2000Rag]: $Y_4Ni_6Al_{23}$ (monoclinic), YNi_3Al_9 (ErNi₃Al₉-type rhombohedral), $YNiAl_4$ (orthorhombic, space group *Cmcm*), and $YNiAl_3$ (orthorhombic, *Pnma*).

Ternary Phase Equilibria

With starting metals of 99.999% Al, 99.99% Ni and 99.9% Y, [2000Rag] induction-melted about 62 ternary alloys with Al content in the range of 60 to 98 at.%. The alloys were annealed at 500 °C for 2 weeks and slowly cooled to room temperature. The phase equilibria were

Fig. 2 Al-Ni-Y partial liquidus projection for Al-rich alloys [2000Rag, 2009Gol]

studied with x-ray powder diffraction, optical and scanning electron microscopy and electron probe microanalysis. The partial isothermal section constructed by [2000Rag] at 500 °C is shown in Fig. 1. The Al-rich region is dominated by two tie-triangles (Al) + α Al₃Y + Y₄Ni₆Al₂₃ and (Al) + NiAl₃ + Y₄Ni₆Al₂₃. Based on metallographic observations, a tentative liquidus projection was presented by [2000Rag], Fig. 2. The primary crystallization field of Y₄Ni₆Al₂₃ dominates the liquidus surface.

Recently, [2009Gol] carried out a thermodynamic analysis of the Al-rich region of this system. The liquidus projection computed by them for the Al-rich region is compared with the experimental results of [2000Rag] in Fig. 2. The agreement is satisfactory. [2009Gol], however, accepted $Y_3Ni_5Al_{19}$ as the ternary phase richest in Al, in preference to $Y_4Ni_6Al_{23}$. The ideal compositions of these two compounds are very close.

References

1968Ros: S. Rosen and J.A. Goebel, Phase Equilibria in the Nickel-Aluminum-Yttrium System at 1000 °C, J. Less-Common Met., 1968, 16, p 285-287

- **1977Ryk:** R.M. Rykhal and O.S. Zarechnyuk, Isothermal Section at 800°C of Yttrium-Nickel-Aluminum Ternary System in the Range of 0-33.3 At.% of Yttrium, *Dopov. Akad. Nauk Ukr: RSR, Ser. A*, 1977, **39**(4), p 375-377, in Ukrainian
- **1992Gla1:** R.E. Gladyshevskii and E. Parthe, Structure of Orthorhombic YNiAl₃, *Acta Crystallogr. Sect. C*, 1992, **C48**(2), p 229-232
- 1992Gla2: R.E. Gladyshevskii and E. Parthe, Structure of Monoclinic Y₄Ni₆Al₂₃, *Acta Crystallogr. Sect. C*, 1992, C48(2), p 232-236
- **1993Gla:** R.E. Gladyshevskii, K. Cenzual, F.D. Flack, and E. Parthe, Structure of RNi₃Al₉ (R = Y, Gd, Dy, Er) with Either Ordered or Partially Ordered Arrangement of Aluminum-Atom Triangles and Rare-Earth-Metal Atoms, *Acta Crystallogr. Sect. B*, 1993, **B49**(3), p 468-474
- 1993Oka: H. Okamoto, Al-Ni (Aluminum-Nickel), J. Phase Equilib., 1993, 14(2), p 257-259
- **2000Rag:** R. Raggio, G. Borzone, and R. Ferro, The Al-Rich Region in the Y-Ni-Al System: Microstructures and Phase Equilibria, *Intermetallics*, 2000, **8**, p 247-257
- 2004Vas: A.L. Vasilev, M. Aindow, M.J. Blackburn, and T.J. Watson, *Intermetallics*, 2004, **12**, p 349-362
- **2009Gol:** W.J. Golumbfskie, S.N. Prins, T.J. Eden, and Z.K. Liu, Predictions of the Al-Rich Region of the Al-Co-Ni-Y System Based Upon First-Principles and Experimental Data, *CALPHAD*, 2009, **33**, p 124-135